Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Lang Yang, ${ }^{\text {a }}$ Zhong-Lu You ${ }^{\text {b }}$ and Hai-Liang Zhu ${ }^{\text {c* }}$
${ }^{\text {a }}$ Department of Chemistry, Xiangfan University, Xiangfan Hubei 441000, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and ${ }^{\text {c Department of Chemistry, Fuyang }}$ Normal College, Fuyang Anhui 236041,
People's Republic of China

Correspondence e-mail:
hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.037$
$w R$ factor $=0.098$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2-aminopyridine- κN^{1})silver(I) hexafluoroarsenate

The title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{AsF}_{6}\right)$, is a mononuclear silver(I) compound. The Ag atom is bicoordinated in a distorted linear configuration by two N atoms from two symmetry-related 2 -aminopyridine ligands. In the crystal structure, the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ intermolecular hydrogen bonds, forming layers parallel to the ac plane.

Comment

Recently, we have reported the structures of a few silver(I) complexes (You, Zhu \& Liu, 2004; You, Yang et al., 2004; Zhu et al., 1999, 2000). As an extension of our work on the structural characterization of silver(I) complexes, the title complex, (I), is reported here.

(I)

The structure of (I), a mononuclear silver(I) complex, is illustrated in Fig. 1. The asymmetric unit contains one-half of the complex cation, with the other half generated by twofold rotation symmetry, and one-half of a hexafluoroarsenate anion, with the other half related by a crystallographic inversion centre. The Ag and As atoms lie on the crystallographic twofold axis and inversion centre, respectively.

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 26 July 2004
Accepted 2 August 2004
Online 7 August 2004

Figure 2
A packing diagram of (I), viewed along the c axis. Hydrogen bonds are shown as dashed lines.

In the cation, the Ag^{I} atom is in a roughly linear coordination environment and is bicoordinated by two N atoms from two symmetry-related 2 -aminopyridine ligands. The N1$\mathrm{Ag} 1-\mathrm{N} 1\left(1-x, y, \frac{1}{2}-z\right)$ angle is $167.40(17)^{\circ}$, indicating a significantly distorted linear geometry for atom Ag1; this value is comparable to that observed in a similar silver(I) complex [172.37 (8) ${ }^{\circ}$; Zhu et al., 2003]. The $\mathrm{Ag}-\mathrm{N}$ bond length is 2.143 (4) \AA, which is comparable to the value observed in another similar complex [2.148 (3) Å; You, Yang et al., 2004]. In the anion, the central As^{V} atom is coordinated by six F atoms in an octahedral geometry. The three trans angles are exactly equal to 180° by symmetry and all other angles around As1 are close to 90°, ranging from 89.4 (2) to $90.6(2)^{\circ}$ (Table 1), indicating a very slightly distorted octahedral geometry for atom As1.

In the crystal structure, the molecules are linked by N $\mathrm{H} \cdots \mathrm{F}$ intermolecular hydrogen bonds (Table 2), forming layers parallel to the $a c$ plane (Fig. 2).

Experimental

2-Aminopyridine ($0.1 \mathrm{mmol}, 9.4 \mathrm{mg}$) and silver hexafluoroarsenate ($0.1 \mathrm{mmol}, 29.7 \mathrm{mg}$) were dissolved in an ammonia solution (10 ml , 30%). The mixture was stirred for 10 min at room temperature to give a clear colourless solution. The resulting solution was kept in air and, after slow evaporation of the solvent over a period of 8 d , large colourless block-shaped crystals of (I) formed at the bottom of the vessel.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Ag}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{AsF}_{6}\right)} \\
& M_{r}=485.03 \\
& \text { Monoclinic, } C 2 / c \\
& a=11.379(2) \AA \\
& b=12.971(3) \AA \\
& c=10.158(2) \AA \\
& \beta=103.90(3)^{\circ} \\
& V=1455.3(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=2.214 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 872 reflections
$\theta=2.1-23.2^{\circ}$
$\mu=3.71 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.18 \times 0.12 \times 0.11 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.555, T_{\max }=0.686$
2453 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.099$
$S=1.08$
1353 reflections
111 parameters
H atoms treated by a mixture of independent and constrained refinement

1353 independent reflections
1210 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 14$
$k=-10 \rightarrow 16$
$l=-12 \rightarrow 11$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0626 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.95 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.76 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0051 (7)

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

Ag1-N1	2.143 (4)	As1-F3	1.705 (3)
As1-F2	1.689 (3)	As1-F1	1.722 (3)
$\mathrm{N} 1^{\text {i }}-\mathrm{Ag} 1-\mathrm{N} 1$	167.40 (17)	$\mathrm{F} 2-\mathrm{As} 1-\mathrm{F} 1^{\text {ii }}$	89.84 (17)
$\mathrm{F} 2-\mathrm{As} 1-\mathrm{F} 2^{\text {ii }}$	180	$\mathrm{F} 3-\mathrm{As} 1-\mathrm{F} 1^{\text {ii }}$	89.49 (14)
F2-As1-F3 ${ }^{\text {ii }}$	90.6 (2)	F2-As1-F1	90.16 (17)
F2-As1-F3	89.4 (2)	F3-As1-F1	90.51 (14)
F3i ${ }^{\text {ii }}$ As1-F3	180	F1 ${ }^{\text {iii }}$-As1-F1	180

Symmetry codes: (i) $1-x, y, \frac{1}{2}-z$; (ii) $\frac{3}{2}-x, \frac{1}{2}-y,-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2B $\cdots \mathrm{F}^{\text {iii }}$	$0.90(1)$	$2.23(2)$	$3.077(5)$	$158(4)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~F} 1$	$0.90(1)$	$2.32(2)$	$3.163(5)$	$157(4)$

Symmetry code: (iii) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$.
Atoms H2A and H2B were located in a difference Fourier map and refined isotropically, with the $\mathrm{N}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to 0.90 (1) and 1.43 (2) Å, respectively. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, and with $U_{\mathrm{iso}}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
You, Z.-L., Yang, L., Zou, Y., Zeng, W.-J., Liu, W.-S. \& Zhu, H.-L. (2004). Acta Cryst. C60, m117-m118.
You, Z.-L., Zhu, H.-L. \& Liu, W.-S. (2004). Acta Cryst. C60, m231m232.

Zhu, H.-L., Liu, X.-Y., Wang, X.-J., Yang, F., Usman, A. \& Fun, H.-K. (2003). Z. Anorg. Allg. Chem. 629, 1986-1990.

Zhu, H.-L., Tong, Y.-X. \& Chen, X.-M. (2000). J. Chem. Soc. Dalton Trans. pp. 4182-4186.
Zhu, H.-L., Tong, Y.-X., Long, L.-S., Tong, M.-L. \& Chen, X.-M. (1999). Supramol. Chem. 11, 119-133.

